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ABSTRACT: Quantum codes can be constructed by BCH codes containing their Euclidean or Hermitian duals. In this 

paper new classes of classical non – primitive narrow sense BCH codes of even length  < 2��� �⁄ + 	
 containing their 

Euclidean duals codes are constructed. Further, the bound on the designed distance and the dimension of Euclidean dual 

containing BCH codes of length � = ���	�����	

��	  and � = ���	�����	�

��	  are derived. Efficacy of these results made it possible 

to find the Quantum BCH codes using CSS construction. 

Keywords: Euclidean dual containing codes, cyclotomic cosets, Bose-Chaudhuri-Hocquenghem codes (BCH codes), quantum 

codes. 

I. INTRODUCTION 

Quantum error correcting codes are affective aid to fight against inexorable errors during the quantum information 

processing. Many classes of self- orthogonal or dual containing classical codes have been used to design good 

quantum codes [1-10]. One of the important classes of classical cyclic codes is the Bose- Chaudhuri – 

Hocquenghem codes [16-18] which have been recently used to construct many classes of quantum codes. For a 
given code length and designed distance the condition under which a binary narrow-sense primitive BCH code 

contains its dual was given in [6]. These results were further generalised to narrow sense primitive as well as non 

primitive BCH codes over finite field �� and ���in [7,8]. The exact dimensions of BCH codes for a given range of 

designed distance were determined in [5, 8], [11-15], [23-25]. 

In particular [8], determined the dimensions and bounds on the minimum distance of these codes by employing the 

properties of cyclotomic q-cosets and �� cosets and hence many good quantum codes were constructed. In addition 

[8] proved the sufficient condition for a narrow sense BCH code to contain its dual, according to which the  

designed distance � should be in the range 2 ≤ � ≤ ���, where � = �
���� �� ! �⁄ " − 1 − �� − 1�[& '((]
 and for 

codes with even order this bound becomes 2 ≤ � ≤ �
�� �⁄ ��.  In [5] the new codes construction were shown to have 

better dimension than the one constructed in [8] for a fixed length and designed distance. G. G. La Guardia [13]  

constructed quantum BCH codes of length n a factor of � − 1 where '*(���� = 2 andalso codes of prime length 

where '*(���� = 2. In [14] some new properties of cyclotomic cosets were discussed for length �! − 1 based on 

which the bounds on designed distance and dimension of cyclic codes were determined. The authors in [15] 

improved the bounds on the designed distance of narrow sense and non narrow sense quantum BCH codes of length 

+ = �,��
-  and + = 3��� − 1���� + � + 1�. In [24] quantum BCH codes of length + = �0��

�  and + = �0��
���  were 

constructed with improved parameters. For length + =  ��!  +  1, the maximum designed distance of  Hermitian 

dual-containing constacyclic BCH codes was found in [25]. 

In extension to these works, two new classes of dual containing BCH codes are constructed. The bound on the 

designed distance has been found.  Thus using CSS construction the two new classes of quantum BCH codes of 

length + = �������1���
���  and + = �������1��� 

���  are constructed. The maximum designed distance of these codes is found 

to be large and hence generating good parameters of the resulting quantum codes. Most of the authors ([5], [14-15], 

[23]) have improved the parameters derived by [8]. Thus codes of length + < 2��! �⁄ + 1� with even order were not 

considered. Since the length of the codes considered in this paper is < 2��! �⁄ + 1
 and of even length with '*(���� = 6, so the codes generated in this manuscript are new. 

This paper is planned as follows. Section 2 consists of the basic concepts, terminology and some known results. In 

section 3 and 4 construction of two families of non primitive, narrow sense classical BCH codes is presented by 

studying their respective cyclotomic sets. The bound on the designed distance and the dimension of the resulting 
codes has been found. In Section 5 quantum codes are constructed from these families and their parameters are 

compared with those existing in literature. Finally Section 6 consists of the conclusion part. 

                                                                                         

International Journal of Theoretical & Applied Sciences,       9(2): 314-319(2017)    



                                                                                  Taneja                                                                              315 

II. PRELIMINARIES 

This section consists of the basic notations and the known results necessary for the construction of the paper. 

In this paper q denotes a prime power and a finite field with q elements is denoted by ��. For an [+, 4, (]� code C, its 

Euclidean dual code is denoted by56. Here gcd�+, �� = 1 and & = '*(���� denotes the multiplicative order of q 

modulo n. The q - coset modulo n containing : is defined by 5; = {:, �:, ��: … , �>��:} where 4 is the smallest 

positive integer such that ��> − 1�: ≡ 0 &'( +. 

A BCH code C of length n over a finite field �� is a cyclic code whose generator polynomial is of the form B�:� =
CD&EF�G��:�, F�G����:�, … , F�G�H����:�I, i.e. B�:� is the monic polynomial of smallest degree over �� having 

JG , JG��, … , JG�K�� as zeros where J is a primitive element of ���  and F�L��:� denotes the minimal polynomial of 

JL ∈ ���. Since F�N��:� = ∏ �: − JL �L∈PQ  so B�:� = ∏ �: − JR�R∈S , T = ⋃ 5G�LH��LVW . The set T is called the 

defining set of C 

For X = 1, the code C is called narrow sense BCH code. For + = �! − 1 it is called primitive or else non primitive 

BCH codes. Since the   generator polynomial has a sequence of δ − 1 consecutive powers of J as zeros, so by BCH 

bound for cyclic codes [23, p. 201(Th-8)] the lower bound on minimum distance of C is δ. Here δ is known as the 

designed distance. 

Classical codes containing its dual can be used to construct quantum codes. The known results used in this context 

are 

Lemma 2.1: [8, Lemma1] Assume that gcd�+, �� = 1. A cyclic code of length n over�� with defining set T contains 

its Euclidean dual code if and only if T ∩ T�� = ∅, where T�� = {−\ &'( + | \ ∈ T}. 

In other words a cyclic code is Euclidean dual containing if q- cyclotomic cosets5; and 5�^, ∀:, ` ∈ T, are distinct. 

Theorem 2.2: [4, Corollary 21] (CSS construction)– If there exists a classical linear [+, 4, (]� code such that 

56 ⊆ 5, then there exists an [[+, 24 − +, ≥ (]]� stabilizer code that is pure to d. If the minimum distance of 56 

exceeds (, then the quantum code is pure and has minimum distance d.  

III. BCH CODES OF LENGTH � = ���	�����	�
��	  

In this section, for + = �������1���
���  by studying the properties of the q-cosets mod n we find the maximal designed 

distance of the dual containing narrow sense BCH codes and also find the dimension of these codes.  

Now, for + = �������1���
���  where � ≥ 3 is an odd prime power and gcd�+, �� = 1 the following results leads us to 

find the parameters of dual containing BCH codes. 

Lemma 3.1 The cardinality of q- ary cyclotomic coset 5; is 6, ∀ 1 ≤ : ≤ 2�, : ≠ d e���
� f where 1 ≤ d ≤ 3 , and 

5Leghi
� f contains three distinct elements. 

Proof: Clearly or (���� = 6. Let if possible |5;| < 6 for some 1 ≤ : ≤ 2� and : ≠ d e���
� f , 1 ≤ d ≤ 3⟹�o: ≡

: &'( + for some 0 < p < 6. '*(���� = 6soj |6. Hence p = 1, 2 '* 3 

Case 1: When p = 1,�: ≡ : &'( + ⇒ :�� − 1� ≡ 0 &'( + 

But, � − 1 ≤ �� − 1�: ≤ 2��� − 1� < +, leading to a contradiction. 

Case 2: When p = 2,��: ≡ : &'( + ⟹:��� − 1� ≡ 0 &'( + 

(a) For 1 ≤ : ≤ � + 2 ��� − 1� ≤ :��� − 1� ≤ �� + 2���� − 1� = �� + 1���� + � − 2� < +, leading to a contradiction. 

(b) For � + 3 ≤ : ≤ 2� and � > 3, :��� − 1� ≡ 0 &'( + ⟹ :��� − 1� − + ≡ 0 &'( + �� + 1��� − 4� ≤ :��� − 1� − + ≤ 2���� − 1� − �� + 1���� + � + 1�, leading to a contradiction. 

For � = 3, it can be easily seen that  ��: ≢ : &'( + 

Case 3: When p = 3 

Let s be an integer such that 1 ≤ u ≤ 4.  
For �u − 1� e���

� f + 1 ≤ : < e���
� f u, 

�-: ≡ : &'( + ⟹:��- − 1� − +�: − u� ≡ 0 &'( + ⟹ ��1��

����� �−2: + u�� + 1�
 ≡ 0 &'( + 

But, 0 < ��1��

����� �−2: + u�� + 1�� ≤ �- − 1 < �������1���

��� = + 

hence a contradiction. 

Equivalently, this means that for, 1 ≤ : ≤ 2�, where : ≠ d e���
� f , 1 ≤ d ≤ 3, we have proved that �-: ≢ : &'( +. 

Thus |5;| = 6, ∀ 1 ≤ : ≤ 2� and : ≠ d e���
� f , 1 ≤ d ≤ 3 

For : = d e���
� f , 1 ≤ d ≤ 3, it can be easily verified that  |5;| = 3. 

Lemma 3.2: 5; ≠ 5�^ for 1 ≤ :, ` ≤ 2�. 
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Proof - If possible let 5; = 5�^  ⟹: ≡ −�L` &'( + where 0 ≤ d ≤ 5 

Case 1 If : ≡ −�L` &'( + where 0 ≤ d ≤ 1⟹2 ≤ : + �L` ≤ : + �` ≤ 2��� + �� < + 

a contradiction 

Case 2 If : ≡ −��` &'( + 

(a) When 1 ≤ ` ≤ � + 2 �X� 2�� + 1 ≤ : + ��` ≤ �� + 4� < + 

(c) When � + 3 ≤ ` ≤ 2� 2�� − 2� ≤ : + ��` − + ≤ �- − 2�� − 1 < + 
leading to a contradiction in both cases. 

Case 3 If : ≡ −�-` &'( + 

Let s be an integer such that 1 ≤ u ≤ 4.  

For �u − 1� e���
� f + 1 ≤ ` ≤ e���

� f u − 1 

: ≡ −�-` &'( + ⟹ �-` + : − +�` − u� ≡ 0 &'( + ⟹ ��- − 1�
�� − 1� �−2` + u�� + 1�
 + ` + : ≡ 0 &'( + 

Now 2 ��1��

����� ≤ ��1��


����� �−2` + u�� + 1�� ≤ �- − 1 

Hence 

2 ��- − 1�
�� − 1� + 2 ≤ ��- − 1�

�� − 1� �−2` + u�� + 1�� + ` + : ≤ �- + 4� < + 

a contradiction. 

Thus : ≢ −�-` &'( + for 1 ≤ :, ` ≤ 2�. 

Case 4: If : ≡ −�L ` &'( + where 4 ≤ d ≤ 5 ⟹−�{�L: ≡ ` &'( +  which is a contradiction as in Case 1 and 2. 

Lemma 3.3: For 1 ≤ :, ` ≤ 2� where ` < :, 5; = 5^ if and only if  : = �`. 

Proof- Since two cosets are either disjoint or identical so : = �` ⟹ 5; = 5^.  

Conversely we prove that for : ≠ �` ⟹ 5; ≠ 5̂ . 

Let if possible 5; = 5^ ⟹ : ≡ �o` &'( + for some 1 ≤ p ≤ 5. 

Case 1- When p = 1 

For 1 ≤ ` ≤ 2�, �` < + and : ≠ �`, hence : ≢ �`. 

Case 2- When j = 2 

a. When 1 ≤ ` ≤ � + 2, : ≡ ��` &'( + ⟹ ��` − : ≡ 0 &'( +. 
Now,�� − 2� ≤ ��` − : ≤ ���� + 2� − 2� < +, leading to a contradiction. 

b. When � + 3 ≤ ` ≤ 2�, : ≡ ��` &'( + ⟹ ��` − + − : ≡ 0 &'( +. �� − 4� − 1 ≤ ��` − + − : ≤ �- − 2�� − 2� − 2 < +, again leading to a contradiction. 

Case 3- When p = 3 

Let sbe an integer such that 1 ≤ u ≤ 4.  

For �u − 1� e���
� f + 1 ≤ ` ≤ e���

� f u − 1 

: ≡ �-` &'( + ⟹ �-` − : − +�` − u� ≡ 0 &'( + ⟹ ��- − 1�
�� − 1� �−2` + u�� + 1�
 + ` − : ≡ 0 &'( + 

Now 2 ��1��

����� ≤ ��1��


����� �−2` + u�� + 1�� ≤ �- − 1 

Hence 

2 ��- − 1�
�� − 1� + 1 − 2� ≤ 2 ��- − 1�

�� − 1� + �u − 1� }� + 1
2 ~ + 1 − 2� ≤ ��- − 1�

�� − 1� �−2` + u�� + 1�� + ` − :
≤ �- − 1 + }� + 1

2 ~ u − 1 − 1 ≤ �- + 2� − 1 < + 

a contradiction. 

Case 4: When p = 4, : ≡ ��` &'( + ⟹ ��: ≡ ` &'( +. As proved in Case 2 it can be proved that this is not 

possible. 

Case 5: When p = 5,: ≡ ��` &'( + ⟹ �: ≡ ` &'( +. 

Here 1 ≤ �:, ` < + and ` < :. Hence �: ≢ ` &'( +. 

Thus the cosets are distinct. 

The above discussion leads to the following theorem  

Theorem 3.4: Let + = �������1���
���  where � ≥ 3 is an odd prime power and gcd�+, �� = 1. Then there exists narrow 

sense  BCH  code  [+, + − 6 e��� − 1� e1 − �
�f� − uf + 3u, ≥ �], where u  is  an  integer representing  the number of 
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multiples of e���
� f in the range [1, � − 1]such that u e���

� f ≤ �� − 1� < �s + 1� e���
� f and 2 ≤ � ≤ �!�; = 2� +

1, containing its Euclidean dual. 

Proof: From the Lemmas it is clear that the defining set Z consisting of union of the distinct cyclotomic cosests 5; 

for 1 ≤ : ≤ 2� contains 2� consecutive integers and T ∩ T�� = ∅. Thus the maximum designed distance of the 

dual containing BCH codes is 2� + 1. 

If = ⋃ 5LH��LV�  , then the number of distinct cosets are ��� − 1� e1 − �
�f�. Also the order of the cosets 5L where d is not 

a multiple of  e���
� f is 6 and for d a multiple of  e���

� f, 5L  contains three distinct elements. For 2 ≤ � ≤ �!�; =
2� + 1 the number of multiples of e���

� f in the range [1, � − 1] is denoted by an integer u such that  u e���
� f ≤

�� − 1� < �s + 1� e���
� f. Thus the set T contains e6 e��� − 1� e1 − �

�f� − uf + 3uf distinct elements. 

IV. BCH CODES OF LENGTH � = ���	�����	�
��	  

In this section we find the bound on the maximum designed distance and the dimension of Eucledian dual 

containing narrow sense BCH code of length= �������1���
��� , thus obtaining a series of BCH codes. In this context 

following results have been proved  

Lemma 4.1 The cardinality of q- coset &'( +is 6, ∀ 1 ≤ : ≤ e���
� f − 1. 

Proof: Clearly for + = �������1��

��� ,  '*(���� = 6.Let if possible |5;| < 6 for some 1 ≤ : ≤ e���

� f − 1 ⟹�o: ≡
: &'( + for some 0 < p < 6. The multiplicative order of q modulo n is 6 so 6|j. Hence p = 1, 2 '* 3 

Case 1: When p = 1'* 2, �o: ≡ : &'( + ⟹ :��o − 1� ≡ 0 &'( + 

But 

:��o − 1� ≤ :��� − 1� ≤ �}� − 1
2 ~ − 1� ��� − 1� ≤ �� − 1� ��� − 2� − 3

2 � ≤ �� − 1���� − � + 1� = + 

hence it leads to a contradiction. 

Case 2: When p = 3,  :��- − 1� ≡ 0 &'( +⟹:��- − 1� − +: ≡ 0 &'( + ⟹ :[2��� − 1�] ≡ 0 &'( + 

Now 2��� − 1� ≤ :[2��� − 1�] ≤ 2��� − 1� e���
� − 1f = �� − 1���� − 3�� 

≤ �� − 1���� − � + 1� = + 
which is a contradiction. 

Thus |5;| = 6, ∀ 1 ≤ : ≤ e���
� f − 1. 

Lemma 4.2-  5; ≠ 5�^ for 1 ≤ :, ` ≤ e���
� f − 1. 

Proof - If possible let 5; = 5�^ for some 1 ≤ :, ` ≤ e���
� f − 1⟹: ≡ −�L` &'( + where 0 ≤ d ≤ 5 

Case 1 If : ≡ −�L` &'( + where 0 ≤ d ≤ 2 ⟹2 ≤ : + �L` ≤ : + ��` ≤ ��� + 1� e��-
� f < + a contradiction 

Case 2  If: ≡ −�-` &'( +. Since �-` ≡ �2�� − 2� + 1�` and 

�2�� − 2� + 1� ≤ �2�� − 2� + 1�` ≤ �2�� − 2� + 1� }� − 3
2 ~ 

2��� − � + 1� ≤ x + �2�� − 2� + 1�` ≤ ��� − � + 1��� − 3� < + 
 contradicting our assumption. 

Case 3: If : ≡ −�L ` &'( + where 4 ≤ d ≤ 5⟹−�{�L: ≡ ` &'( +  which is again a contradiction as in Case 1. 

Lemma 4.3 –All cosets are distinct in the range [1, e���
� f − 1]. 

Proof- Let if possible 5; = 5^ for some1 ≤ :, ` ≤ e���
� f − 1where : ≠ `⟹: ≡ �o` &'( + for some 1 ≤ p ≤ 5. 

For 1 ≤ : ≤ e���
� f − 1, �o: < +, 0 ≤ p ≤ 2.Hence : ≢ �o ` &'( + for 1 ≤ p ≤ 2. Also for 4 ≤ p ≤ 5, : ≡

�o` &'( +⟹ �{�o: ≡ ` &'( + which is not possible as earlier.  

If possible let  : ≡ �-` &'( + ≡ ��-` − +`� &'( + ≡ �2�� − 2� + 1�` &'( + 

Now 2��� − 1� ≤ �2�� − 2� + 1�` ≤ �2�� − 2� + 1� e���
� − 1f 

= �� − 1� e�� − 3� + �
�f < �� − 1���� − � + 1� = +                                                                                       

and 1 ≤ : ≤ e���
� f − 1. Hence it leads to a contradiction. Thus the cosets are distinct. 

As consequences of these results we have the following theorem. 
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Theorem 4.4: Let + = �������1��

���  where � ≥ 5 is an odd prime power and gcd�+, �� = 1. Then there exists a BCH 

code [+, + − 6�δ − 1�, ≥ �], where 2 ≤ δ ≤ δ!�; = ���
� , containing its Euclidean dual. 

V. QUANTUM BCH CODES AND CODE COMPARISON 

In this section, quantum BCH codes of length+ = �������1���
���  and + = �������1���

��� are constructed. The constructed 

code parameters are compared with those available in literature and it is shown that the bounds on the maximum 

designed distance of the constructed codes have been improved. 

Theorem 5.1: Let + = �������1��

���  where � ≥ 3 is an odd prime power and gcd�+, �� = 1.Then there exists quantum 

BCH code with parameters��+, + − 2 e6 e��� − 1� e1 − �
�f� − uf + 3uf , ≥ ���, where u is an integer representing 

the number of multiples of e���
� f in the range [1, δ − 1]such that u e���

� f ≤ �� − 1� < �s + 1� e���
� f and 2 ≤ � ≤

�!�; = 2� + 1that is pure to �. 
 

Theorem 5.2: Let + = �������1���
��� , where � ≥ 5 is an odd prime power and gcd�+, �� = 1.Then thereexists quantum 

BCH code with parameters [[+, + − 12�� − 1�, ≥ �]], where 2 ≤ � ≤ �!�; = ���
�  that is pure to �. 

The above two results are direct consequences of Theorem 3.1, 4.4 and 2.2. 

Since the length of the codes considered in this paper is < 2��! �⁄ + 1
and of even length with '*(���� = 6, so the 

codes constructed are new. Moreover the maximum designed distance of the codes is large consequently we have 

constructed a series of quantum codes with better parameters. In Table 1 and 2 we have listed series of the new 

quantum codes constructed for a particular value of q. 

Table 1: New quantum codes constructed from narrow sense BCH codes of length � = ���	�����	

��	 = �	� and 

� ≤ � ≤ ���� = 	�. 
Δ [[+, 4, ( ≥ �]]� 

2 [[910,898, ( ≥ 2]]� 

3 [[910,886, ( ≥ 3]]� 

4 [[910,874, ( ≥ 4]]� 

5 [[910,862 , ( ≥ 5]]� 

6 [[910,856, ( ≥ 6]]� 

7 [[910,844, ( ≥ 7]]� 

8 [[910,832, ( ≥ 8]]� 

9 [[910,820, ( ≥ 9]]� 

10 [[910,820, ( ≥ 10]]� 

11 [[910,814, ( ≥ 11]]� 

12 [[910,802, ( ≥ 12]]� 

13 [[910,790, ( ≥ 13]]� 

14 [[910,778, ( ≥ 14]]� 

15 [[910,766, ( ≥ 15]]� 

16 [[910,760, ( ≥ 16]]� 

17 [[910,748, ( ≥ 17]]� 

18 [[910,736, ( ≥ 18]]� 

19 [[910,736, ( ≥ 19]]� 

Table 2: New quantum codes constructed from narrow sense BCH codes of length � = ����	������	

���	 = 	���� 

and � ≤ � ≤ ���� = 	�. 
Δ [[+, 4, ( ≥ �]]�� 

2 [[14424, 14412, ( ≥ 2]]�� 

3 [[14424,14400, ( ≥ 3]]�� 

4 [[14424, 14388, ( ≥ 4]]�� 

5 [[14424,14376 , ( ≥ 5]]�� 

6 [[14424, 14364, ( ≥ 6]]�� 

7 [[14424, 14352, ( ≥ 7]]�� 

8 [[14424, 14340, ( ≥ 8]]�� 

9 [[14424, 14328, ( ≥ 9]]�� 

10 [[14424, 14316, ( ≥ 10]]�� 

11 [[14424, 14304, ( ≥ 11]]�� 

12 [[14424, 14292, ( ≥ 12]]�� 
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VI. CONCLUSION 

 The maximum designed distance and the dimension of non primitive narrow sense BCH codes of length + =
�������1���

���  and + = �������1���
���  have been found.”   These codes generated a series of quantum codes using the CSS 

construction. The constructed codes seem to be new as these are not available in literature. 
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